The Standardization of Aromatic and Heteroaromatic Nitration Rates $\boldsymbol{\dagger}$

By Alan R. Katritzky,* Bulent Terem, and (in part) Eric V. Scriven, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ
Sergio Clementi, Istituto di Chimica Organica, Università di Perugia, Italy
H. Okan Tarhan, Department of Chemistry, Middle East Technical University, Ankara, Turkey

Abstract

Methods for extrapolating rates for nitrations in aqueous sulphuric acid to different temperatures and acidities are discussed. A standard procedure to obtain k_{o} values at 25° and $H_{0}-6.6$ is applied to literature data for 131 nitration rates. Allowance is made where necessary for minority species concentrations.

Nitration is perhaps the most common of the electrophilic substitution reactions of aromatic rings. It is widely used preparatively, and has been extensively studied kinetically in this ${ }^{2}$ and in other laboratories. ${ }^{3-5}$ Comparison of nitration rates of different compounds is complicated by their variation with solvent and acidity. Because of the considerable acidity dependence, kinetic rates can be obtained for compounds of widely differing reactivity in aqueous sulphuric acid of appropriate concentration. In this respect nitration kinetics resemble those for acid-catalysed hydrogen exchange: in previous work, we have given reasons for choosing $\mathrm{pH}=0$ and
\dagger The Kinetics and Mechanism of the Electrophilic Substitution of Heteroaromatic Compounds. Part XL. ${ }^{1}$
${ }^{1}$ Part XXXIX, S. Clementi, C. D. Johnson, and A. R. Katritzky, J.C.S. Perkin II, 1974, 1294.
${ }^{2}$ (a) C. D. Johnson, A. R. Katritzky, B. J. Ridgewell, and M. Viney, J. Chem. Soc. (B), 1967, 1204; (b) C. D. Johnson, A. R. Katritzky, and M. Viney, ibid., p. 1211; (c) C. D. Johnson, A. R. Katritzky, N. Shakir, and M. Viney, ibid., p. 1213; (d) A. R. Katritzky and M. Kingsland, ibid., 1968, p. 862; (e) P. J. Brignell, A. R. Katritzky, and H. O. Tarhan, ibid., p. 1477; (f) A. R. Katritzky, H. O. Tarhan, and S. Tarhan, ibid., 1970, 114 ; (g) C. D. Johnson, A. R. Katritzky, M. Kingsland, and E. F. V. Scriven, ibid., 1971, 1; (h) A. G. Burton, P. P. Forsythe, C. D. Johnson, and A. R. Katritzky, ibid., p. 2365; (i) A. G. Burton, R. D. Frampton, C. D. Johnson, and A. R. Katritzky, J.C.S. Perkin II, 1972, 1940; (j) G. Bianchi, A. G. Burton, C. D. Johnson, and A. R. Katritzky, ibid., 1950; (k) A. G. Burton, P. J. Halls, and A. R. Katritzky, ibid., p. 1953; (l) A. G. Burton, M. Dereli, A. R. Katritzky, and H. O. Tarhan, ibid., 1974, 382; (m) A. G. Burton, A. R. Katritzky, M. Konya, and H. O. Tarhan, ibid., p. 389.
100° as standard conditions for comparing hydrogen exchange rates, ${ }^{6}$ and have defined a procedure for extrapolating measured rates at various temperatures and
${ }^{3}$ (a) R. B. Moodie, K. Schofield, and M. J. Williamson, ' Nitrocompounds,' (Proceedings of the International Symposium, Warsaw, 1963), Pergamon, London, 1964, p. 89; (b) J. Gleghorn, R. B. Moodie, K. Schofield, and M. J. Williamson, J. Chem. Soc. (B), 1966, 870; (c) R. B. Moodie, E. A. Qureshi, K. Schofield, and J. T. Gleghorn, ibid., 1968, 312; (d) J. T. Gleghorn, R. B. Moodie, E. A. Qureshi, and K. Schofield, ibid., p. 316; (e) R. G. Coombes, R. B. Moodie, and K. Schofield, ibid., p. 800; (f) R. B. Moodie, J. R. Penton, and K. Schofield, ibid., 1969, 578; (g) R. G. Coombes, D. H. G. Crout, J. G. Hoggett, R. B. Moodie, and K. Schofield, ibid., 1970, 347; (h) D. H. G. Crout, J. R. Penton, and K. Schofield, ibid., 1971, 1254; (i) R. B. Moodie, J. R. Penton, and K. Schofield, ibid., 1971, 1493; (j) S. R. Hartshorn, R. B. Moodie, and K. Schofield, ibid., p. 2454; (k) S. R. Hartshorn and K. Schofield, J.C.S. Perkin II, 1972, 1652; (l) M. R. Grimmett, S. R. Hartshorn, K. Schofield, and J. B. Weston, ibid., p. 1654.
${ }^{4}$ (a) M. W. Austin and J. H. Ridd, J. Chem. Soc., 1963, 4204; (b) M. Brickman and J. H. Ridd, ibid., 1965, 6845; (c) M. W. Austin, J. R. Blackborow, J. H. Ridd, and B. V. Smith, ibid., p. 1051 ; (d) T. A. Modro and J. H. Ridd, J. Chem. Soc. (B), 1968, 528; S. R. Hartshorn and J. H. Ridd, ibid., (e) p. 1063; (f) p. 1068; (g) A. R. Butler and J. B. Hendry, ibid., 1971, 102; (h) M. I. Vinnik, Zh. E. Grabovskaya, and L. N. Arzamaskova Russ. J. Phys. Chem., 1967, 41, 580; (i) V. Stěrba, J. Arient, and F. N. Navrátil, Coll. Czech. Chem. Comni., 1966, 31, 113; (j) N. C. Deno and R. Stein, J. Amer. Chem. Soc., 1956, '78, 578; (k) G. M. Bennett, J. C. D. Brand, D. M. James, T. G. Saunders, and G. Williams, J. Chem. Soc., 1947, 474; (l) F. H. Westheimer and M. S. Kharasch, J. Amer. Chem. Soc., 1946, 68, 1871.
${ }^{5}$ J. G. Hoggett, R. B. Moodie, J. R. Penton, and K. Schofield, ' Nitration and Aromatic Reactivity,' Cambridge University Press, Cambridge, 1971, ch. 2, and references quoted therein.
${ }^{6}$ P. Bellingham, C. D. Johnson, and A. R. Katritzky, J. Chem. Soc. (B), 1968, 866.
acidities to these standard conditions. ${ }^{7}$ The present paper suggests standard conditions for nitration rates, outlines a procedure to obtain such standard rates, and lists the standard rates so obtained. The availability of such standard nitration rates enables a test ${ }^{8}$ of the general applicability of the reactivities of the various ring positions of the different heterocyclic rings towards electrophilic substitution as measured by the standard k_{0} obtained from the hydrogen exchange data. ${ }^{7,9,10}$ Individual standard nitration rate constants are usually more accurate than those for hydrogen exchange, since the nitration kinetics were followed in dilute solution by u.v., instead of in more concentrated solution by n.m.r., thus obviating salt effects on activities.

Variation of Rate Constants with Acidity.*-The variation of nitration rate constants with acidity is well known. ${ }^{5}$ Plots of $\log k_{2}$ against acidity (rate profiles) are widely used as mechanistic criteria for determining the species undergoing reaction, especially in the form of (a) 'high acidity rate profiles' with the H_{0} acidity function as abscissa, ${ }^{2 a, 4 a}$ (b) 'Moodie-Schofield plots', in which ($H_{\mathrm{R}}+\log a_{\mathrm{H}_{3} \mathrm{O}}$) is used as a measure of the acidity, ${ }^{3 a}$ (c) 'modified rate profiles', (Tarhan plots) in which the rate constants are first corrected for the $\left[\mathrm{NO}_{2}{ }^{+}\right]$concentration and then plotted against $H_{0}{ }^{2 e}$ The theoretical values for the slopes are approached when the acidity functions are corrected for their variation with temperature ${ }^{5,10}$ ($c f$. also ref. 11).

Unusual behaviour is exhibited by benzene: at 25°, the slope of the Moodie-Schofield plot is 1.0 in the range $63-68 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, but the slope increases at greater acidities to 1.2. The non-linearity for benzene may be due to the closeness to the encounter rate. However, it is noteworthy that plots for many substituted benzenes, including compounds more reactive than benzene (toluene, biphenyl, xylenes, mesitylene) and also naphthalene remain linear over a range $56-80 \% \quad \mathrm{H}_{2} \mathrm{SO}_{4}{ }^{3 e}$ The variation of H_{R} with wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ at 25° was recently redetermined; ${ }^{\mathbf{1 2}}$ its variation with temperature [equation (1)] is similar to that [equation (2)] ${ }^{10}$ for H_{0}, although

$$
\begin{align*}
& H_{0}(T)=K / T+L \tag{1}\\
& H_{\mathrm{R}}(T)=A / T+B \tag{2}
\end{align*}
$$

the proportionality coefficient A is smaller than K at each wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. The $a_{\mathrm{H}_{2} \mathrm{O}}$ values for aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ were derived ${ }^{13,14}$ from vapour pressure measurements from plots of $\log a_{\mathrm{H}_{2} \mathrm{O}}$ against wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$, using the values of Shankman and Gordon ${ }^{15}$ below 69% and of

[^0]Deno and Taft ${ }^{16}$ above $69 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. This provides values of $-\left(H_{R}+\log a_{\mathrm{F}_{2} \mathrm{O}}\right)$ for each wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$.

The variation of the $a_{\mathrm{H}_{2} \mathrm{O}}$ with temperature is known for sulphuric acid below 40 wt . $\%$ from e.m.f. measurements. ${ }^{17}$ At acidity up to $40 \% \mathrm{H}_{2} \mathrm{SO}_{4} \log a_{\mathrm{H}_{2} \mathrm{O}}$ increases in a linear fashion with temperature according to equation (3). ${ }^{18} \quad B$ is a constant at a given wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$; a plot of B against wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ (or H_{0}) is a smooth curve, and in the region $0-40 \% \mathrm{H}_{2} \mathrm{SO}_{4} \log B$ can be fitted to a polynomial of third degree [equation (4)]. However, this implies that B reaches a maximum at $H_{0}-2.8$ (i.e. $44.5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ at 25°) and thereafter decreases with increasing $-H_{0}$. This would imply that at high acidities $a_{\mathrm{H}_{2} \mathrm{O}}$ decreases with temperature in contrast to its behaviour at low acidities. Such a conclusion is unlikely; it is unfortunate that no experimental data are available for $\geqslant 40$ wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. Therefore Moodie-Schofield plots cannot presently be accurately corrected for temperature, and are thus unsuitable for extrapolating rate constants.

$$
\begin{align*}
\log a_{\mathrm{H}_{2} \mathrm{O}}\left(T^{\circ}\right) & =\log a_{\mathrm{H}_{2} \mathrm{O}}\left(25^{\circ}\right)+(T-298.15) B \tag{3}\\
\log B & =a\left(H_{0}\right)^{3}+b\left(H_{0}\right)^{2}+c\left(H_{0}\right)+d \tag{4}
\end{align*}
$$

A proper application of the modified rate profile requires knowledge of both the acidity function followed by nitric acid and of the variation of the $\mathrm{p} K_{\mathrm{a}}$ of nitric acid with temperature: these are not available and unsuccessful attempts of their evaluation will be reported elsewhere. ${ }^{19}$

In view of the difficulties in applying the other methods, we consider that rate profiles at elevated temperatures are best plotted using $H_{0}(T)$.

Temperature Variation of Rate Constants at Constant wet. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$.-The temperature variations previously studied ${ }^{2-4}$ refer to constant wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. Values for ΔH^{\ddagger} and ΔS^{\ddagger}, recalculated (where possible) from these literature data, are recorded in Table 1.

A large spread in the distribution of the activation entropies is observed (the mean value is $-16 \mathrm{cal} \mathrm{mol}^{-1}$ K^{-1} with a standard deviation of 9), whereas the heats of activation lie within a smaller range $(17.6 \pm 4.0 \mathrm{kcal}$ $\left.\mathrm{mol}^{-1}\right)$. The average value of ΔH^{\ddagger} is larger for reactions. taking place on a minority species ($21.7 \pm 4.0 \mathrm{kcal} \mathrm{mol}^{-1}$) than for those on a majority species $(16.1 \pm 2.8 \mathrm{kcal}$ mol^{-1}).

[^1]Temperature Variation at Constant H_{0}. - As previously pointed out for hydrogen exchange, ${ }^{7}$ the variation of acidity with temperature renders the activation parameters determined from solutions of identical wt. \%
$\mathrm{H}_{2} \mathrm{SO}_{4}$ at different temperatures ' apparent values '. We now consider $\Delta \bar{H}^{\ddagger}$ and $\Delta \bar{S} \ddagger$ which refer to constant H_{0} values. The simplest method for measuring $\Delta \bar{H}^{\ddagger}$ and $\Delta \bar{S} \ddagger$ is by the construction of two or more rate profiles

Table 1
Activation parameters at constant wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}\left(\Delta H^{\ddagger}, \Delta S^{\ddagger}\right)$ and at constant $H_{0}\left(\Delta \bar{H}^{\ddagger}, \Delta \bar{S}^{\ddagger}\right)$

Compound	Wt. \% $\mathrm{H}_{2} \mathrm{SO}_{4}$	$-H_{0}\left(25^{\circ}\right)$	$m^{\text {a }}$	$\begin{gathered} \Delta H^{\ddagger b} \\ \left(\mathbf{k c a l ~ m o l}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta S^{\ddagger b} \\ \left(\operatorname{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \bar{H}^{\ddagger c} \\ \left(\mathrm{kcal}_{\mathrm{mol}}{ }^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \bar{S}_{\ddagger}^{\ddagger} d \\ (\mathrm{cal} \mathrm{~mol} \\ \left.\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right) \end{gathered}$	Ref.
(i) Majority species reactions								
Benzene	67.1	5.35	$2.31{ }^{\text {e }}$	$17.4{ }^{\text {f }}$	$-8{ }^{f}$	32.4	42	$3 e$
	73.2	6.45		$13.3{ }^{\text {f }}$	$-17{ }^{f}$	31.5	44	
Fluorobenzene	67.5	5.43	2.34	16.5	-14	31.9	38	$3 g$
	73.2	6.45		$13.4{ }^{\text {f }}$	$-15{ }^{f}$	31.8	46	
Chlorobenzene	67.5	5.43	2.35	18.7	-8	34.2	44	3 g
Bromobenzene	67.5	5.43	2.50	17.7	-12	34.1	43	3 g
Benzamide	81.2	7.69	2.28	14.8	-24	36.9	51	$3 f$
Trimethylbenzylammonium cation	70.0	5.82	2.36	18.3	-18	35.1	38	$4 d$
p-Dichlorobenzene	73.2	6.45	2.61	15.4	-19	35.9	50	3 g
	80.5	7.57		10.6	-21	35.6	63	
Thiophen	66.4	5.25	2.04	17.8	-2	30.6	41	$4 g$
	69.2	5.72		16.1	-4	30.3	44	
3,5-Dimethylisothiazole	81.7	7.71	1.74	17.2	-32	34.2	24	$2 h$
2,3,5-Trimethylisothiazolium cation	81.4	7.68	1.89	16.1	-35	34.6	27	$2 h$
2-Dimethylaminopyridine	76.2	6.83	2.01	16.8	-9	34.1	49	$2 i$
3,5-Dimethoxypyridine 1-oxide	82.3	7.82	$1.97{ }^{g}$	19.5	-13	39.1	53	$2 c$
2,6-Dimethoxypyridine l-oxide	84.8	8.24	2.50	13.8	-26	40.1	62	$2 c$
2,4,6-Trimethoxypyridine 1-oxide	81.0	7.60	2.75	16.1	-18	42.6	71	$2 c$
Isoquinoline	81.3	7.69	1.88	$13.5{ }^{f}$	$-25{ }^{f}$	31.8	36	3 c
2-Methylisoquinolinium cation	81.3	7.69	1.94	$14.3{ }^{f}$	$-22{ }^{f}$	33.2	41	3 c
2-Hydroxyisoquinolinium cation	83.1	7.97	2.19	14.0	-23	36.3	52	$3 b$
2-Methoxyisoquinolinium cation	83.1	7.97	2.22	14.9	-22	37.5	54	$3 b$
Cinnoline	76.1	6.82	2.17	23.7	-19	42.4	44	3 c
	81.1	7.63		19.5	-24	40.5	46	
2-Methylcinnolinium cation	81.2	7.64	2.26	18.4	-25	40.3	48	3 c
4-Quinolone	81.4	7.71	2.45	13.3	-23	37.3	58	$3 i$
1-Methyl-4-quinolone	81.4	7.71	2.28	12.9	-26	35.2	49	$3 i$
4-Methoxyquinoline	81.4	7.71	2.50	13.2	-24	37.7	58	$3 i$
4 -Cinnolone	81.2	7.69	2.07	19.7	-13	40.0	55	$3 i$
(ii) Minority species reactions								
Acetophenone	81.4	7.71	1.63	16.9	-10	32.9	44	$3 f$
2,3-Dimethyl-4-nitro-1-phenyl-Δ^{3}-pyrazolin-5-one	84.1	8.12	0.82	15.8	-15	24.4	14	$2 l$
2,3-Dimethyl-4-nitro-1-p-nitro-phenyl- Δ^{3}-pyrazolin-5-one	84.1	8.12	1.22	17.2	-11	31.6	30	$2 l$
2-Dimethylamino-5-nitropyridine	79.8	7.42	1.59	24.6	8	39.4	58	$2 i$
2-Dimethylamino-3-nitropyridine	79.6	7.35	1.67	20.4	-9	35.9	43	$2 i$
2,6-Dimethylpyridine 1-oxide	78.2	7.15	0.73	25.8	-7	32.4	15	$3 b$
	81.4	7.71		23.2	-12	30.3	12	
	84.3	8.14		22.6	-12	30.2	14	
2,6-Dichloropyridine 1-oxide	82.4	8.16	$0.98{ }^{\text {g }}$	26.2	-7	35.9	26	$2 c$
3,5-Dimethoxy-2-nitropyridine l-oxide	82.0	7.77	1.12	19.5	-13	30.6	24	$2 c$
1-p-Nitrophenylpyrazole	81.0	7.60	1.27	26.6	-6	35.9	35	$2 m$

${ }^{a}$ Rate profile slope. ${ }^{b}$ Recalculated from literature data by the Eyring equation, unless otherwise stated. ${ }^{c}$ Calculated by equation (15). ${ }^{d}$ Calculated by equation (17). ${ }^{e}$ Rate profile up to $70.6 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. ${ }^{f}$ Calculated from E_{a} and $\log A$ values reported in the quoted reference. © N. Shakir, Ph.D. Thesis, University of East Anglia, 1966.

Table 2
Thermodynamic parameters at constant H_{0} calculated from rate profiles at various temperatures

Compound	T/ ${ }^{\circ} \mathrm{C}$	Slope	$-\log k_{2}{ }^{\text {a }}$	$\begin{gathered} \Delta \widetilde{H}^{\ddagger a} \\ \left(\mathrm{kcal} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \bar{S}^{\ddagger a} \\ \text { (cal } \mathrm{mol}^{-1} \mathrm{~K}^{-1} \text {) } \end{gathered}$	Ref.
4-Pyridone	86	1.53	4.65	34.2	15.4	$2 e$
	110	1.39	3.22			
	133.5	1.59	1.99			
	157.5	1.36	1.15			
2-Pyridone (at $\mathrm{C}-3$)	25	1.04	5.45	36.7	35.8	$2 k$
	40	0.91	4.17			
2-Pyridone (at $\mathrm{C}-5$)	25	1.20	5.91	34.4	29.9	$2 k$
	40	1.08	4.68			
		a At $H_{0}=-6.6$.				

at different temperatures: such data are available for a few cases and are recorded in Table 2.

A less accurate procedure for determining $\Delta \bar{H}^{\ddagger}$ values requires just a rate profile and an individual point at a different temperature. The activation parameters are then calculated by the Eyring equation, at the particular acidity of the individual run, from that rate constant and the interpolated value on the rate profile corresponding to the same H_{0}. Relevant examples are shown in Table 3.

We have sought an alternative procedure for the many cases where the data available consist of a rate profile at

Provided that the rate profile is not curved, a consequence of equation (15) is the non-variance of ($\Delta \bar{H}^{\ddagger}-$ ΔH^{\ddagger}) with acidity. Thus if ΔH^{\ddagger} is a true constant for a certain wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ which at different temperatures spans a range of H_{0} values, then $\Delta \bar{H}^{\ddagger}$ does not vary over this H_{0} range. We show later that, at acidities below $H_{0}-8.5, \Delta \bar{H}^{\ddagger}$ varies little with H_{0}.

The corresponding relation connecting $\Delta S \ddagger$ and $\Delta \overline{S^{\ddagger}}$ follows similarly. We deduce (16) from (5) and (9). Substituting (12) and (14) gives (17). The difference in the entropy terms is seen to vary as the inverse of the unique temperature u at which the H_{0} and the wt. \%

Table 3
Thermodynamic parameters at constant H_{0} calculated from a rate profile and an individual run at a different temperature

Compound	$\begin{aligned} & \mathrm{Wt} . \% \\ & \mathrm{H}_{2} \mathrm{SO}_{4}{ }^{a} \end{aligned}$	$T\left({ }^{\circ} \mathrm{C}\right){ }^{a}$	$H_{0}(T)^{b}$	Slope ${ }^{\text {c }}$	$T\left({ }^{\circ} \mathrm{C}\right){ }^{\text {d }}$	$-\log k_{2}{ }^{e}$	$\begin{gathered} \Delta \bar{H}^{\ddagger} \\ (\mathrm{kcal} \mathrm{~mol} \end{gathered}$	$\text { (cal } \begin{gathered} \Delta \bar{S}^{\ddagger} \\ \mathrm{mol}^{-1} \mathrm{~K}^{-1} \end{gathered}$	Ref.
Fluorobenzene	73.2	2.3	6.84	2.35	25	-0.85	32.7	55	3 g
p-Dichlorobenzene	73.2	45.1	6.00	2.61	25	3.60	36.6	48	3 g
p-Dichlorobenzene	80.5	45.1	7.10			0.73	36.0	59	
Thiophen	69.2	9.2	5.99	1.98	25	-0.74	30.0	45	4 g
2-Dimethylaminopyridine	76.2	50.0	6.36	2.01	30	1.78	29.5	31	$2 i$
4-Methoxyquinoline	81.4	45.0	7.24	2.50	25	3.35	38.2	54	$3 i$

${ }^{a}$ Experimental conditions for the individual run. ${ }^{b}$ At the temperature of the preceding column. ${ }^{c}$ Slope of the available rate profile. ${ }^{a}$ Temperature of the rate profile. ${ }^{e}$ Interpolated value of $\log k_{2}$ on the rate profile at H_{0} reported in the third column.
one temperature together with values of individual rates for one wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ over a temperature range (Figure). We now deduce general relations between ΔH^{\ddagger} and $\Delta \bar{H}^{\ddagger}$ and between ΔS^{\ddagger} and $\Delta \bar{S}^{\ddagger}$ as follows. Over the limited temperature range $t-u$, the rate is found experimentally to vary as a linear function of the inverse temperature [equations (5)-(8)] when the wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ is kept con-

$$
\begin{align*}
R T \ln k & =-\Delta H^{\ddagger}+T \Delta S^{\ddagger} \tag{5}\\
2.3 R t f & =-\Delta H^{\ddagger}+t \Delta S^{\ddagger} \tag{6}\\
2.3 R u g & =-\Delta H^{\ddagger}+u \Delta S^{\ddagger} \tag{7}\\
2.3 R(g-f) & =\Delta H^{\ddagger}(1 / t-1 / u) \tag{8}
\end{align*}
$$

stant at c. Assuming that, over the same limited temperature range, the rate at the constant H_{0} value of a also varies as a linear function of the inverse temperature giving the similar equations (9) and (10), hence we

$$
\begin{align*}
R T \ln k & =-\Delta \bar{H}^{\ddagger}+T \Delta \bar{S}^{\ddagger} \tag{9}\\
2.3 R(g-e) & =\Delta \bar{H}^{\ddagger}(1 / t-1 / u) \tag{10}
\end{align*}
$$

find (11). From the slope m of the rate profile at the temperature of t and relation (12) we deduce (13). Equations of type (1) hold for the variation of H_{0} for a particular wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ where K is a constant for each wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}{ }^{10}$ [equation (14)].

$$
\begin{align*}
2.3 R(f-e) & =\left(\Delta \bar{H}^{\ddagger}-\Delta H^{\ddagger}\right)(1 / t-1 / u) \tag{11}\\
f-e & =m(a-b) \tag{12}\\
\Delta \bar{H}^{\ddagger}-\Delta H^{\ddagger} & =2.3 R m(a-b) /(1 / t-1 / u) \tag{13}\\
a-b & =K(1 / t-1 / u) \tag{14}\\
\Delta \bar{H}^{\ddagger}-\Delta H^{\ddagger} & =2.3 R m K \tag{15}
\end{align*}
$$

$\mathrm{H}_{2} \mathrm{SO}_{4}$ under consideration are identical. When quoting $\Delta \bar{S}^{\ddagger}$, we take u as the standard temperature of 25°.

$$
\begin{align*}
\Delta \bar{S}^{\ddagger}-\Delta S^{\ddagger} & =2.3 R u(f-e) /(u-t) \tag{16}\\
\Delta \bar{S}^{\ddagger}-\Delta S^{\ddagger} & =2.3 R m K / u \tag{17}
\end{align*}
$$

Heats of Activation $\Delta \bar{H} \ddagger$ at Constant H_{0}.-Thermodynamic parameters obtained by equations (15) and (17) from

Relation between rates at constant wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ and constant H_{0}. In this figure and in equations (5)-(17), the following symbols are used: t, u, experimental temperatures in Kelvins ($u>t$; the whole rate profile is available at t; only an individual rate is available at u) ; e, $f, g, \log k$ values (see Figure); a, b, H_{o} values (see Figure) ; c, wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ (corresponding to $H_{0}=a$ at $T=t$, and $H_{0}=b$ at $T=u$.
literature results in the range $H_{0}-5$ to -8.5 are summarised in Table 1. Because of the curvatures of the rate profiles at higher acidities such data are excluded.

There is no significant correlation of $\Delta \bar{H}^{\ddagger}$ with acidity within the range $H_{0}-5$ to -8.5 (correlation coefficient 0.20 , slope 0.85). Since the rate profile slopes vary little with temperature, ${ }^{7}$ we consider the mean value of 34.9 $\mathrm{kcal} \mathrm{mol}^{-1}$ (standard deviation 3.9) for $\Delta \bar{H}^{\ddagger}$ to be more
significant than interpolated value of $\Delta \overleftarrow{H}^{\ddagger} 34.4 \mathrm{kcal} \mathrm{mol}^{-1}$ at the standard (see later) acidity of $H_{0}-6.6$. The mean value for minority species reactions ($33.5 \mathrm{kcal} \mathrm{mol}^{-1}$) is close to the overall average.

A comparison of the thermodynamic parameters of Table 1 with those reported in Table 3 shows minor discrepancies between the two procedures, which are ascribed to the fact that the Eyring equation is applied to two points only to obtain the activation parameters of Table

The standard acidity of $H_{0}-6.6$ minimises the extrapolations needed for the rate profiles of many substrates and is not far from the range of ' normal 'behaviour found for benzene.

The procedure for the determination of standard rates from the experimentally measured rates requires four consecutive steps. (A) Determination of k_{2} (obs) at the individual acidity and temperature, involving knowledge of the acidity function followed and its

Table 4
Slopes and correlation coefficients of plots of $\log k_{2}$ (obs) against H_{0}, H_{R}, and $\left(H_{\mathrm{R}}+\log a_{\mathrm{H}_{2} \mathrm{O}}\right)^{a}$

		$\frac{\mathrm{d}\left[\log k_{2}\right]}{}$		$\underline{\mathrm{d}\left[\log k_{2}\right]}$		$\mathrm{d}\left[\log k_{2}\right]$		
Compound	$T\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{d}\left[-H_{0}\right]$	r^{6}	$\overline{\mathrm{d}\left[-H_{\mathrm{R}}\right]}$	$r^{\text {b }}$	$\left.\overline{\mathrm{d}\left[-\left(H_{\mathbf{R}}+\log a_{\mathrm{H}_{2} \mathrm{O}}\right)\right.}\right]$	r^{b}	Ref.
Benzene	25	2.31	0.9995	1.26	0.9975	1.18	0.9995	$3 e$
Naphthalene	25	2.20	0.9997	1.15	0.9983	1.00	0.9993	$3 e$
p-Dichlorobenzene	25	2.61	0.9981	1.59	0.9974	1.12	0.9975	3 g
Thiophen	25	2.04	0.9999	1.06	0.9956	0.94	0.9994	$4 g$
2-Phenylpyridine	25	2.47	0.9854	1.49	0.9789	1.02	0.9734	$2 d$
Acetophenone	25	1.63	0.9998	0.94	0.9960	0.66	0.9965	$3 f$
3,5-Dimethylisothiazole	80	1.74	0.9967	1.10	0.9959	0.72	0.9970	$2 h$
2-Pyridone (at C-3)	40	0.91	0.9995	0.57	0.9984	0.39	0.9991	$2 k$
2-Pyridone (at C-5)	40	1.08	0.9989	0.67	0.9996	0.46	0.9998	$2 k$
1,5-Dimethyl-2-pyridone	40	1.21	0.9981	1.07	0.9997	0.71	0.9999	$2 e$
Uracil	60	1.15	0.9992	0.67	0.9990	0.46	0.9993	$2 g$
1,3-Dimethyluracil	60	1.25	0.9962	0.73	0.9976	0.50	0.9977	$2 g$

${ }^{a} H_{\mathrm{O}}$ and H_{R} are corrected for their variation with temperature as in refs. 10 and 12 , respectively, whereas $\log a_{\mathrm{H}_{2} \mathrm{O}}$ values are always at $\mathbf{2 5}{ }^{\circ} .{ }^{b}$ Correlation coefficient.

Table 5

Difference $\left(\Delta \log k_{2}\right)$ between $\log k_{2}$ at $H_{0}-9.66\left(94 \% \mathrm{H}_{2} \mathrm{SO}_{4}\right.$ at $\left.25^{\circ}\right)$ and $\log k_{2}$ at $H_{0}-6.60\left(75 \% \mathrm{H}_{2} \mathrm{SO}_{4}\right.$ at $\left.25^{\circ}\right)$ for majority species reactions at 25°										
Compound	$\begin{aligned} & \text { Range } \\ & \% \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$	Range $-H_{0}$	$m^{\text {a }}$	$-\log k_{\mathbf{2}}{ }^{\text {b }}$	$\begin{gathered} \text { Range } \\ \% \mathrm{H}_{2} \mathrm{SO}_{4} \end{gathered}$	Range $-H_{0}$	m^{c}	$-\log k_{2}{ }^{\text {d }}$	$\Delta \log k_{2}$	Ref.
p-Dichlorobenzene	73-85	6.4-8.4	2.61	2.00	93-98	$9.4-10.5$	-0.21	-4.11	6.11	3 g
p-Chloronitrobenzene	$80-88$	$7.5-8.7$	2.25	5.60	$91-98$	$9.2-10.5$	-0.48	0.57	5.03	$4 h$
p-Nitrotoluene	$71-88$	6.0-8.8	2.36	2.95	$91-98$	$9.2-10.2$	-0.61	-1.88	4.83	$4 h$
o-Chloronitrobenzene	$80-88$	$7.4-8.7$	2.24	3.79	$90-98$	9.1-10.4	-0.42	-0.97	4.76	$4 h$
2-Methoxy-4-methylthiazole	74-88	$6.5-8.8$	2.22	4.56	$93-98$	$9.4-10.3$	-0.27	-0.52	5.08	e
1,2,3,5-Tetramethylpyrazolium cation	76-88	6.7-8.6	2.31	5.02	$92-98$	$9.3-10.4$	-0.68	0.34	4.68	$2 h$
1,3,5-Trimethylpyrazole f	73-88	6.4-8.6	2.35	5.14	92-98	9.3-10.4	-0.84	0.47	4.61	$2 h$
1-Phenylpyrazole	78-88	$7.1-8.7$	1.64	3.13	$90-97$	$9.1-10.3$	-0.19	-0.60	3.73	$2 m$
5-Methoxy-3-methyl-4-nitro-1-phenylpyrazole	81-88	7.7-8.7	1.51	3.63	$90-96$	8.9-9.9	-0.21	0.44	3.19	$2 l$
${ }^{b}$ At $H_{0}-6.60 . \quad$ Rate profile slope in the high acidity range										

3, but to all the available temperatures for those of Table 1.

The activation entropies cover a much larger range than the corresponding $\Delta \bar{H}^{\ddagger}$. The average $\Delta \bar{S}^{\ddagger}$ is highly positive ($42 \pm 14 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$); the transition state structure is presumably less solvated than the ground state.

Definition of Standard Conditions.-The definition of standard conditions is more difficult for nitration than for hydrogen exchange because of uncertainty in the $\mathrm{NO}_{2}{ }^{+}$ activity variation and the peculiar behaviour of benzene itself. We have selected $T=25^{\circ}$ and $H_{0}=-6.6$ $\left(75 \% \mathrm{H}_{2} \mathrm{SO}_{4}\right.$ at 25°) as the standard conditions. We chose 25° because many nitration kinetics have been followed at this temperature, and most in the range 0$100^{\circ}$.
variation with temperature. (B) Determination of k_{2} (T) at $H_{0}-6.6$, involving construction of the rate profile and its extrapolation to the proper acidity. (C) Determination of $k_{2}\left(25^{\circ}\right)$ at the standard acidity, involving evaluation or estimate of the thermodynamic parameters at that acidity. (D) Determination of $k_{2}{ }^{\circ}$, involving correction for minority species reaction, which requires knowledge of the $\mathrm{p} K_{\mathrm{a}}$ of the substrate at the standard temperature.
PROCEDURE
(A) Determination of k_{2} (obs) at a particular T and H_{0}.This is obtained from individual experimental runs. The standardisation of acid is often done by titration. ${ }^{2}$ The low substrate concentration required for u.v. analyses obviates acidity corrections for the protonation of the substrate or salt effects.

The variation ${ }^{10}$ of H_{0} with wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ at 25° is used to obtain H_{0} values corresponding to the experimental percentages of sulphuric acid. The variation of H_{0} with temperature at any particular wt. $\% \mathbf{H}_{2} \mathrm{SO}_{4}$ is given by equation (18); H_{0} is a linear function of the inverse of the absolute temperature. ${ }^{10}$ The appropriate values of K are
requires the construction and the extrapolation of a rate profile. We have given above reasons for using a plot of $\log k_{2}$ (obs) $\left(T^{0}\right)$ against $-H_{0}$. Such plots always show good straight lines with positive slopes in the range $65-86 \%$ $\mathrm{H}_{2} \mathrm{SO}_{4}$; at higher acidities the plot curves until the slope becomes negative.

Tables 6
Difference between $\log k_{2}$ at $94 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\log k_{2}$ at $\mathbf{7 5} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ for majority species reactions at temperatures $>25^{\circ}$

Compound	$T\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Range } \\ & \% \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$	$\begin{gathered} \text { Range } \\ -H_{0} \end{gathered}$	$m^{\text {a }}$	$\begin{aligned} & -\log k_{2} \\ & \left(-H_{0}\right)^{b} \end{aligned}$	$\begin{gathered} \text { Range } \\ \% \mathrm{H}_{2} \mathrm{SO}_{4} \end{gathered}$	$\begin{aligned} & \text { Range } \\ & -H_{0} \end{aligned}$	m°	$\begin{aligned} & -\log k_{2} \\ & \left(-H_{0}\right)^{d} \end{aligned}$	$\Delta \log k_{2}$	Ref.
5-Methoxy-3-methyl-	40	81-88	7.1-8.4	1.73	4.82 (6.31)	90-98	8.6-10.3	-0.39	1.22 (9.24)	3.60	$2 l$
1-p-nitrophenyl-											
pyrazole											
1,3-Dimethylpyrazole	40	$75-87$	6.4-8.2	2.23	5.35 (6.31)	89-97	$8.6-9.9$	-0.67	0.99 (9.24)	4.36	e
1,5-Dimethylpyrazole	40	75-87	6.4-8.2	2.21	5.57 (6.31)	$89-96$	$8.6-9.5$	-0.87	1.33 (9.24)	4.24	e
3,5-Dimethylisothiazole	80	$78-88$	$6.1-7.6$	1.74	6.69 (5.65)	$92-97$	$8.2-9.1$	-0.38	3.21 (8.30)	3.48	$2 h$
2,3,5-Trimethylisothiazolium	80	78-88	$6.1-7.5$	1.89	6.86 (5.65)	92-97	$8.1-9.0$	-0.45	3.15 (8.30)	3.71	$2 h$
1-Methylpyrazole	80	$80-88$	6.4-7.8	1.59	5.12 (5.65)	$90-98$	7.8-9.3	-0.45	1.80 (8.30)	3.32	e
2,4-Dimethylthiazole	90	$81-87$	$6.3-7.1$	3.08	5.95 (5.50)	$90-98$	$7.5-8.9$	-0.34	1.33 (8.01)	4.62	f
3,5-Dimethyliso-	130	74-84	4.9-6.6	1.76	4.72 (5.07)	$92-96$	7.1-7.7	-0.42	1.95 (7.39)	2.77	5

thiazole
${ }^{a}$ Rate profile slope in the low acidity region. ${ }^{b}$ At $75 \% \mathrm{H}_{2} \mathrm{SO}_{4}$; the corresponding $H_{0}(T)$ values are given in parentheses. ${ }^{c}$ Rate profile slope in the high acidity region. a At $94 \% \mathrm{H}_{2} \mathrm{SO}_{4}$; the corresponding $H_{0}(T)$ values are given in parentheses. e H. O. Tarhan, unpublished results. f S. Ilkay and H. O. Tarhan, Chimica Acta Turcica, 1973, 1, 123. g B. Terem, unpublished results.

Table 7
Experimental thermodynamic parameters (at constant wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}$) in the high acidity region ${ }^{a}$

Compound	Wt. \% H $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\Delta H^{\ddagger}\left(\mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$	$\Delta S^{\ddagger}\left(\mathrm{cal} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}\right)$	Ref.
Acetophenone	98.1	17.1	-9	$3 f$
p-Nitroaniline	90.1	18.4	-6	$4 f$
	98.0	17.7	-13	
2-Chloro-4-nitroaniline	93.8	19.0	2	$4 f$
	98.0	18.5	-4	
Pyrazole	98.6	16.5	-26	4 c
4-Nitro-l-phenylpyrazole	95.9	15.6	-13	$2 m$
2,3-Dimethyl-4-nitro-1-phenyl-	91.2	12.6	-24	$2 l$
Δ^{3}-pyrazolin-5-one				
4-Pyridone	92.2	19.3	-20	$2 e$
3-Methyl-2-pyridone	94.2	17.1	-9	$2 e$
2-Methoxy-3-methylpyridine	95.3	15.7	-24	$2 e$
2,4-Dimethoxypyridine	89.5	14.8	-17	$2 a$
3,5-Dimethoxypyridine	90.0	11.9	-19	$2 b$
3,5-Dimethoxy-2-nitropyridine	89.8	22.2	-7	$2 b$
2,6-Dichloropyridine	98.3	16.9	-8	$2 a$
2,4,6-Trimethylpyridine	90.4	12.6	-18	$2 a$
	90.7	17.5	-26	
	98.1	19.6	-23	
2-Dimethylaminopyridine	97.4	13.3	-4	$2 i$
2,6-Dichloropyridine 1-oxide	94.9	23.5	-8	2 c
3,5-Dimethylpyridine 1-oxide	91.8	25.3	-9	$2 c$
2,6-Dimethylpyridine 1-oxide	92.5	21.4	-14	$3 b$
	97.8	23.8	-10	
2-Dimethylamino-3-nitropyridine	97.5	14.1	-22	$2 i$
4-Dimethylamino-3-nitropyridine	90.3	17.6	-14	$2 i$
2,4-Dimethoxypyrimidine	97.5	15.8	-24	2 g
Uracil	91.2	22.6	1	$2 g$
6-Methyluracil	90.2	23.5	9	2 g
1,3-Dimethyluracil	91.2	23.4	6	2 g
Quinoline	98.0	13.6	-22	$4 a$

a All figures were recalculated from literature data by the Eyring equation.
found from a graph, constructed ${ }^{10}$ from the acidity variation.

$$
H_{0}\left(T^{\circ}\right)=H_{0}\left(25^{\circ}\right)+K(298.15-T) / 298.15 T
$$

(B) Determination of k_{2} (obs) at $\mathrm{T}=\mathrm{T}$ and $\mathrm{H}_{0}-6.6$.The determination of a rate constant at a given acidity for a reaction investigated only in a different range of acidities

Data recorded in Table 4 show that the correlation coefficients of these plots are slightly higher (mean value is 0.998) than those of the plots against H_{R} (mean value 0.996) and of the Moodie-Schofield plots (mean value 0.997). The $\log k_{2}$ (obs) $\left(T^{0}\right)$ values at $H_{0}-6.6$ are taken from a regression analysis on the region $-H_{0} 5.5-8.5$ of the plots.
(C) Determination of k_{2} (obs) at $\mathrm{T}=25^{\circ}$ and $\mathrm{H}_{0}=-6.6$.-

When experimental data are recorded at temperatures higher than 25° the rate constants at standard conditions are calculated by equation (19) from the extrapolated k_{2} (obs) at T^{0} and $H_{0}-6.6$.
$\log k_{2}\left(T^{\circ}\right)=\log k_{2}\left(25^{\circ}\right)-\frac{\Delta H^{\ddagger}}{2.3 R}\left(\frac{1}{273.15+T}-\frac{1}{298 \cdot 15}\right)$

We need therefore the $\Delta \bar{H}^{\ddagger}$ value, since we are referring to a constant acidity. As we have just pointed out in the introduction most of the variation appears to be included in the $\Delta \bar{S} \ddagger$ term, whereas the activation enthalpies do not vary significantly with the individual compounds. Henceforth we use $\Delta \bar{H}^{\ddagger} 35 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ at $H_{0}-6.6$ which is the statistical average value for all compounds.
(D) Determination of Standard Rates $\left(\mathrm{k}_{2}{ }^{0}\right.$ at 25° and H_{0} -6.6).-For reactions proceeding on a majority species $k_{2}(\mathrm{obs})=k_{2}{ }^{0}$. For reactions proceeding on a minority species (e.g. on a free base below the $\mathrm{p} K_{\mathrm{a}}$ value) a correction must be made [equation (21)] easily derived from equation (20), where $H_{0}^{\frac{1}{2}}$ is the half-protonation value of the particular substrate and m is the slope of $\log \left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$ against $H_{0} .{ }^{2 k}$

$$
\begin{align*}
& \log k_{2}^{0}=\log k_{2}(\mathrm{obs})-m\left(H_{0}^{\frac{1}{2}}-H_{0}\right) \tag{20}\\
& \log {k_{2}}^{0}=\log k_{2}(\mathrm{obs})+\mathrm{p} K_{\mathrm{a}}+6.6 m \tag{21}
\end{align*}
$$

Alternative Procedure.-If insufficient experimental data are available for rates at acidities below $H_{0}-8.5$ extrapolated rates are obtained from the high acidity region of the rate profiles by a different procedure. This same procedure is also used for the extrapolation of compounds which show a mechanistic changeover, i.e. where the nitration proceeds via a minority species (free base) mechanism at low acidities but a majority species (conjugate acid) mechanism at higher acidities. For majority species reactions in which no such change in mechanism occurs, the difference in the $\log k_{2}$ (obs) $\left(25^{\circ}\right)$ values at $H_{0}-6.60\left(75 \% \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and $-9.66\left(94 \% \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ lies within a narrow range (Table 5). The average difference for homocyclic substrates $(5.2 \pm 0.6$ log units) is higher than that for heteroaromatic compounds $(4.3 \pm 0.8 \mathrm{log}$ units) presumably because of systematic differences in the activity coefficients in the two classes of compounds, which are known to affect significantly the rate profile slopes in the high acidity region. ${ }^{4 h}$

It is an experimental fact that rate profiles at temperatures higher than 25° continue to show a maximum near 88% $\mathrm{H}_{2} \mathrm{SO}_{4}$; i.e. at progressively less negative H_{0} values as the temperature increases. ${ }^{4 h}$ In Table 6 we report $\log k_{2}$ (obs) values for $75-94 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ for compounds measured at higher temperatures. The data in Table 6 are arranged in order of the temperature, little variation and no clear trend are found between $\Delta \log k_{2}$ and the temperature, and for all these values $\Delta \log k_{2}=3.8 \pm 0.6$. This value is close to that found for 25°, implying that ΔH^{\ddagger} does not change significantly with $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. Table 7 records ΔH^{\ddagger} values for higher $\%$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ recalculated by the Eyring equation from literature data: ${ }^{2-4}$ we find $\Delta H^{\ddagger}=18.0 \pm 3.8$, close to the values found for lower $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ values. Taken together, the data of Tables 5 and 6 provide an average of 4.0 ± 0.7 for $\Delta \log k_{2}$.

This result allows use of the following procedure to calculate extrapolated rates at $H_{0}-6.6$ even when a mechanistic changeover has occurred. $\log k_{\mathbf{2}}$ (obs) Values at T^{0} are obtained from the rate profile at $H_{0}(T)$ corresponding to 94%
$\mathrm{H}_{2} \mathrm{SO}_{4}$. Subtraction of 4.0 from this value gives an estimate for $\log k_{2}$ (obs) at $H_{0}(T)$ corresponding to $75 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. $\log k_{2}$ (obs) $\left(T_{0}\right)$ values are then converted to 25°, by equation (19), using the average ΔH^{\ddagger} value ($17.6 \mathrm{kcal} \mathrm{mol}^{-1}$), i.e. by a temperature extrapolation at constant $\% \mathrm{H}_{2} \mathrm{SO}_{4}$: in this way $\log k_{2}$ (obs) for a conjugate acid reaction at 25° and $H_{0}-6.6$ is obtained.

RESULTS

Typical examples of the application of the procedure just mentioned are given in Table 8, which gives details of calcu-

Table 8

Examples of application of the standardisation procedure
(1) Free base reaction: 4-pyridone at 133.5°
(A) (a) Wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}=80.5$
(b) $H_{0}\left(25^{\circ}\right)=-7.54$ from data of ref. 10
(c) $H_{0}\left(133.5^{\circ}\right)=-5.68$ using equation (1) with $K=2080$
(B) $\log k_{2}$ (obs) at $H_{0}-6.6$ is -1.99 by least square extrapolation of the rate profile
(C) Using an $\Delta \bar{H}^{\ddagger}$ of $35 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ gives $\log k_{2}(\mathrm{obs})\left(25^{\circ}\right)$ at $H_{0}-6.6$ as -8.84
(D) (a) $\mathrm{p} K_{\mathrm{a}}\left(25^{\circ}\right)=3.27 ; m=0.65$
(b) Hence $\log k_{2}{ }^{0}$ (calc) is -1.28 using equation (21)
(c) Since nitration occurs at two equivalent positions $\log k_{2}{ }^{0}$ (corr) is -1.58
(2) Conjugate acid reaction: 3,5-dimethylisothiazole at 80°
(A) (a) Wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4}=81.7$
(b) $H_{0}\left(25^{\circ}\right)=-7.72$ from data of ref. 10
(c) $H_{0}\left(80^{\circ}\right)=-6.70$ using equation (l) with $K=2150$
(B) $\quad \log k_{2}$ (obs) at $H_{0}-6.6$ is -6.69 by least square interpolation of the rate profile
(C) Using an ΔH^{\ddagger} of $35 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ gives $\log k_{2}(\mathrm{obs})\left(25^{\circ}\right)$ at $H_{0}-6.6$ as -9.03
(D) No correction for majority species. Hence log $k_{2}{ }^{0}$ is -9.03
(3) Alternative procedure: pyrazole at 80°
(A) (a) $\mathrm{Wt} . \% \mathrm{H}_{2} \mathrm{SO}_{4}=95.0$
(b) $H_{0}\left(25^{\circ}\right)=-9.81$ from data of ref. 10
(c) $H_{0}\left(80^{\circ}\right)=-8.44$ using equation (1) with $K=2600$
(B^{\prime}) (a) $\log k_{2}$ (obs) at $H_{0}(T)$ corresponding to $94 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (-8.30) is -2.39 by least square interpolation of the rate profile at acidities higher than $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$
(b) $\log k_{2}(\mathrm{obs})$ at $H_{0}(T)$ corresponding to $75 \% \mathrm{H}_{2} \mathrm{SO}_{4}$
(C') $\log k_{2}$ (obs) at $H_{0}=-6.6$ and 25° is -8.43 , by a temperature extrapolation at constant $\% \mathrm{H}_{2} \mathrm{SO}_{4}$, using ΔH^{\ddagger} $17.6 \mathrm{kcal} \mathrm{mol}^{-1}$
(D) No correction for majority species. Hence log $k_{\mathbf{2}}{ }^{0}$ is -8.43
lations for 4 -pyridone (free base reaction), 3,5-dimethylisothiazole (majority species reaction), and pyrazole (from data in the high acidity range).

Available data from previous work are summarised in Table 9, and the procedures already outlined have been applied to this data to yield the results given in the same table.

For benzene and a few halogenobenzenes we report the more recent data of Moodie, Schofield, et al. ${ }^{3 e, g}$ and not the older ones by Deno and Stein, ${ }^{4 j}$ although the standard rates obtained from the two data sets show good agreement: for example $\log k_{2}{ }^{0}$ for benzene is 0.21 from data of ref. $4 j$ and 0.45 from data of ref. $3 e$.

When nitration occurs at more than one position the slope refers to the overall reaction. Standard rates for nitration at the individual positions are obtained using the isomer distribution at the nearest measured acidity to $75 \% \mathrm{H}_{2} \mathrm{SO}_{4}$.

When nitration occurs at two or more equivalent positions,

Table 9
Standard rate constants

Table 9 (Continued)

a Corrected for isomer distribution and, (where necessary) for the statistical facto $\therefore .{ }^{b}$ C. C. Greig, Ph.D. Thesis, University of East Anglia, 1970. e K. E. Cooper and C. K. Ingold, J. Chem. Soc., 1927, CXXIV, 836. a $H_{0}-7.26$ from D. D. Perrin Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1965, p. 422. Estimated as in b. ${ }^{f} \log k_{2}$ At the H_{0} corresponding to $94 \%_{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ as the alternative procedure is used (see text). $g \Delta \log k_{2}$ is taken as 5.2 since the substrate is benzenoid. ${ }^{h}$ P. H. Griffiths, W. A. Walkey, and H. B. Watson, J. Chem. Soc., 1934, 631. i Ref. 2j. $\quad \boldsymbol{j} m=1$, Since protonation takes place on nitrogen, of. M. J.
Cook, N. L. Dassanayake, C. D. Johnson, A. R. Katritzky, and T. W. Toone, J.C.S. Perkin II, 1974, 1069 . k Estimated value see ref. $2 k$. l The mechanism is in doubt: Cook, N. L. Dassanayake, C. D. Johnson, A. R. Katritzky, and T. W. Toone, J.C.S. Perkin II, 1974, $1069 . k$ Estimated value see ref. $2 k$. ${ }^{l}$ The mechanism is in doubt:
see original reference and ref. $3 d . \quad m$ Ref. $3 d . \quad n$ N. Shakir, Ph.D. Thesis, University of East Anglia, 1966. o Approximate value: see original reference. p S. Clementi, see original reference and ref. 3d. $\quad m$ Ref. $3 d .{ }^{n}$ N. Shakir, Ph.D. Thesis, University of East Anglia, 1.
P. P. Forsythe, C. D. Johnson, A. R. Katritzky, and B. Terem, J.C.S. Perkin II, 1974, $399 . \quad q$ Ref. $3 h$.
the $\log k_{2}{ }^{0}$ (calc) values reported refer to overall reactivity whereas in the $\log k_{2}{ }^{0}$ (corr) values the statistical factor has been allowed for by division of the rate by 2 (or 3 etc .).

The alternative procedure, by which the standard rate is obtained from that part of the rate profile at acidities higher than $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, has been applied to 16 compounds. Fair agreement is found for the standard rates derived applying both the standard and the alternative procedure to the data for quinolinium and anilinium ions. Nevertheless we realise that the error involved in this method is much larger than that involved in the standard procedure. The standard procedure error is estimated as 0.2 log units, on the basis of standard rates obtained from different data sets for the same compound.

Analysis of the $c a .130$ rate profiles examined shows that the magnitude of the slope $\mathrm{d}\left[\log k_{2}\right] / \mathrm{d}\left[-H_{0}\right]$ provides a mechanistic criterion. All majority species reactions with only three exceptions (4-dimethylaminopyridine, 1-phenyl-
pyrazole, and 2-methylthiophen) exhibit slopes higher than 1.7 (mean value 2.24 ± 0.27) whereas the slope for all minority species reactions is less than 1.7 (mean value 1.23 ± 0.24); 2-pyrimidone is an apparent exception, whereas benzoic acid has a $\mathrm{p} K_{\mathrm{a}}$ value which lies within the relevant H_{0} region. Compounds undergoing reaction with rate profile slopes close to 1.7 must be investigated by other mechanistic criteria. ${ }^{2-5}$

It is planned in a later paper ${ }^{8}$ to attempt to correlate the standard rates of Table 9 with analogous hydrogenexchange data and by the Hammett equation.

We thank Dr. A. G. Burton for initial work in the development of this procedure, Dr. C. D. Johnson for discussion, also the CNR (Italy) for a NATO senior fellowship (to S. C.), and NATO for financial assistance (to B. T. and H. O. T.).
[5/373 Received, 21st February, 1975]

[^0]: * The following symbols are used in this paper: k_{0}, standard rate for $\mathrm{H} / \mathrm{D} ; k_{2}$, observed nitration rate; $k_{2}{ }^{\circ}$ standard nitration rate; H_{0}, H_{R}, acidity functions; $a_{\mathrm{H}_{2} \mathrm{O}}$, activity of water; K, proportionality coefficient between H_{0} and $T ; T$, temperature in Kelvins; T°, temperature in degrees Celsius; $\Delta H^{\ddagger}, \Delta S^{\ddagger}$, activation parameters at constant wt. $\% \mathrm{H}_{2} \mathrm{SO}_{4} ; \Delta \tilde{H^{\ddagger}}, \Delta \bar{S}^{\ddagger}$, activation parameters at constant $H_{0} ; m$, slope of the rate profiles.
 ${ }^{7}$ A. El-Anani, J. Banger, G. Bianchi, S. Clementi, C. D. Johnson, and A. R. Katritzky, J.C.S. Perkin II, 1973, 1065.
 ${ }_{8}$ A. R. Katritzky, S. Clementi, and H. O. Tarhan, J.C.S. Perkin II, 1975, 1624.
 ${ }^{9}$ S. Clementi and A. R. Katritzky, J.C.S. Perkin II, 1973, 1077.

[^1]: ${ }^{10}$ C. D. Johnson, A. R. Katritzky, and S. A. Shapiro, J. Amer. Chem. Soc., 1969, 91, 6654.
 ${ }_{11}$ E. V. Scriven, Ph.D. Thesis, University of East Anglia, 1969.
 ${ }_{12}$ M. J. Cook, N. L. Dassanayake, C. D. Johnson, A. R. Katritzky, and T. W. Toone, J. Amer. Chem. Soc., 1975, $9^{7}{ }^{7}, 760$.
 ${ }^{13}$ W. F. Giauque, E. W. Hornung, J. E. Kunzler, and T. R. Rubin, J. Amer. Chem. Soc., 1960, 82, 62.
 14 J. F. Bunnett, J. Amer. Chem. Soc., 1961, 83, 4956.
 15 S . Shankman and A. R. Gordon, J. Amer. Chem. Soc., 1939, 61, 2370.
 ${ }_{16}$ N. C. Deno and R. W. Taft, jun., J. Amer. Chem. Soc., 1954, "76, 244.
 ${ }^{17}$ 'H. S. Harned and W. J. Hamer, J. Amer. Chem. Soc., 1935, 5\%, 27.
 ${ }_{18}$ A. G. Burton, Ph.D. Thesis, University of East Anglia, 1971.
 ${ }^{19}$ B. Terem, Ph.D. Thesis, University of East Anglia, 1974.

